[Advanced Mathematics]
Trigonometry Formulae For All Competitive Exams
TRIGONOMETRY
Formulae:-
-
1 right angle = 900
-
10 = 60′ {1 degree = 60 minutes}
-
1′ = 60” {1 minute = 60 seconds}
-
Sides ratio in functions:
L |
A |
L |
K |
K |
A |
P |
B |
P |
H |
H |
B |
L, P = Perpendicular
A, B = Base
K, H= Hypotenuse
-
Sin2 θ + Cos2 θ = 1
-
Sec2 θ – Tan2 θ = 1
-
Cosec2 θ – Cot2 θ = 1
-
Cos (-θ) = Cos θ
-
Sec (-θ ) = Sec θ
-
Tan (-θ) = – Tan θ
-
Cot (-θ) = – Cot θ
-
Sin (-θ) = – Sin θ
-
Cosec (-θ) = – Cosec θ
Table
00 |
300 |
450 |
600 |
900 |
|
Sin θ |
0 |
1/2 |
1/√2 |
√3/2 |
1 |
Cos θ |
1 |
√3/2 |
1/√2 |
1/2 |
0 |
Tan θ |
0 |
1/√3 |
1 |
√3 |
∞ |
Cot θ |
∞ |
√3 |
1 |
1/√3 |
0 |
Sec θ |
1 |
2/√3 |
√2 |
2 |
∞ |
Cosec θ |
∞ |
2 |
√2 |
2/√3 |
1 |
Quadrant |
Limit |
Signs of functions |
I |
00 |
All functions are positive. |
II |
900 |
Sin θ and Cosec θ are positive. |
III |
180 |
Tan θ and Cot θ are positive. |
IV |
270 |
Cos θ and Sec θ are positive. |
Some Important Tricks
-
m sin θ ± n cos θ {Maximum value} = √m2 + n2
-
m sin θ ± n sin θ {Maximum value} = √m2 + n2
-
m cos θ ± n cos θ {Maximum value} = √m2 + n2
-
tan 10 . tan 20 …………. tan 890 = 1
-
cot 10 . cot 20 …………. cot 890 = 1
-
cos 10 . cos 20 …………cos 900 = 0
-
cos 10 . cos 20 …………cos 900 = 0
-
sin 10 . sin 20 …………. sin 1800 = 0
-
sin 10 . sin 20 …………. sin 1800 = 0
-
Sin (A + B) = Sin A . Cos B + Cos A. Sin B
-
Sin (A – B) = Sin A . Cos B – Cos A . Sin B
-
Cos (A + B) = Cos A . Cos B – Sin A .Sin B
-
Cos (A – B) = Cos A . Cos B + Sin A . Sin B
-
Tan (A + B) = tan A + tan B
1 – tan A.tan B
-
Tan (A – B) = tan A – tan B
1 + tan A.tan B
-
Cot(A + B) = Cot A Cot B-1
Cot B+Cot A
-
Cot(A – B) = Cot A Cot B+1
Cot B – Cot A
-
Sin(x+y) Sin(x-y) = Sin2x – Sin2y
-
Cos(x+y) Cos(x-y) = Cos2x – Sin2y
-
2 Sin x Cos y = Sin (x+y)+ Sin(x-y)
-
2 Cos x Sin y = Sin (x+y) – Sin(x-y)
-
2 Cos x Cos y = Cos (x+y) + Cos (x-y)
-
2 Sin x Sin y = Cos (x-y) – Cos (x+y)
-
Sin 2A = 2 Sin A.Cos A
= 2 tan A
1 + tan2 A
-
Cos 2A = Cos2 A – Sin2 A
= 2 Cos2 A – 1
= 1 – 2Sin2 A
= 1 – tan2 A
1 + tan2 A
-
Tan 2A = 2 tan A
1 – tan2 A
-
Sin 3x = 3 Sin x- 4 Sin3x
-
Cos 3x = 4 Cos3x- 3 Cos x
-
Tan 3A = 3tan A – tan3 A
1 – 3 tan2 A
-
Sin C + Sin D = 2 Sin C + D. Cos C – D
2 2
-
Sin C – Sin D = 2 Sin C – D. Cos C + D
2 2
-
Cos C + Cos D = 2 Cos C + D. Cos C – D
2 2
-
Cos C – Cos D = – 2 Sin C + D. Sin C – D
2 2
Sine Rule :
-
Cos A = b2 + c2 – a2
2bc
-
Cos B = c2 + a2 – b2
2ca
-
Cos C = a2+ b2 – c2
2ab
-
Sin θ. Sin 2θ. Sin 4θ = ¼ Sin 3θ
-
Cos θ. Cos 2θ. Cos 4θ = ¼ Cos 3θ
-
tan θ. tan 2θ. tan 4θ = tan 3θ
-
Sin x = 2 Sin x/2. Cos x/2
-
Cos x = 1 – 2 Sin2 x/2
-
Cos x = 2 Cos 2 x/2 – 1
-
Sec θ + tan θ= x, sec θ = {x2+1}/ 2x
-
Sec θ – tan θ= x, sec θ = {x2+1}/ 2x
-
sin θ + cos θ = x, sin θ- cos θ = √{2-x2}