[Mathematics] Trigonometry Formulae For All Competitive Exams

Table of Contents

[Advanced Mathematics]

Trigonometry Formulae For All Competitive Exams

TRIGONOMETRY

Formulae:-

  • 1 right angle  = 900

  • 10 = 60′ {1 degree = 60 minutes}

  • 1′ = 60” {1 minute = 60 seconds}

  • Sides ratio in functions:

L

A

L

K

K

A

P

B

P

H

H

B

L, P = Perpendicular

A, B = Base

K, H= Hypotenuse

  • Sin2 θ + Cos2 θ = 1

  • Sec2 θ – Tan2 θ = 1

  • Cosec2 θ – Cot2 θ = 1

  • Cos (-θ) = Cos θ

  • Sec (-θ ) = Sec θ

  • Tan (-θ) = – Tan θ

  • Cot (-θ) = – Cot θ

  • Sin (-θ) = – Sin θ

  • Cosec (-θ) = – Cosec θ

Table

00

300

450

600

900

Sin θ

0

1/2

1/√2

√3/2

1

Cos θ

1

√3/2

1/√2

1/2

0

Tan θ

0

1/√3

1

√3

Cot θ

√3

1

1/√3

0

Sec θ

1

2/√3

√2

2

Cosec θ

2

√2

2/√3

1

Quadrant

Limit

Signs of functions

I

00

All functions are positive.

II

900

Sin θ and Cosec θ are positive.

III

180

Tan θ and Cot θ are positive.

IV

270

Cos θ and Sec θ are positive.

Some Important Tricks

  • m sin θ ± n cos θ {Maximum value} = √m2 + n2

  • m sin θ ± n sin θ {Maximum value} = √m2 + n2

  • m cos θ ± n cos θ {Maximum value} = √m2 + n2

  • tan 10 . tan 20 …………. tan 890 = 1

  • cot 10 . cot 20 …………. cot 890 = 1

  • cos 10 . cos 20 …………cos 900 = 0

  • cos 10 . cos 20 …………cos 90 = 0

  • sin 10 . sin 20 …………. sin 1800 = 0

  • sin 10 . sin 20 …………. sin 180 = 0

  • Sin (A + B) =  Sin A . Cos B + Cos A. Sin B

  • Sin (A – B) =  Sin A . Cos B – Cos A . Sin B

  • Cos (A + B) = Cos A . Cos B – Sin A .Sin B

  • Cos (A – B) = Cos A . Cos B + Sin A . Sin B

  • Tan (A + B) =     tan A + tan B        

                                1 – tan A.tan B

  • Tan (A – B) =    tan A – tan B      

                               1 + tan A.tan B

  • Cot(A + B) =      Cot A Cot B-1       

                                  Cot B+Cot A

  • Cot(A – B) =     Cot A Cot B+1        

                                Cot B – Cot A

  • Sin(x+y) Sin(x-y) = Sin2x – Sin2y

  • Cos(x+y) Cos(x-y) = Cos2x – Sin2y

  • 2 Sin x Cos y = Sin (x+y)+ Sin(x-y)

  • 2 Cos x Sin y = Sin (x+y) – Sin(x-y)

  • 2 Cos x Cos y = Cos (x+y) + Cos (x-y)

  • 2 Sin x Sin y = Cos (x-y) – Cos (x+y)

  • Sin 2A                = 2 Sin A.Cos A

                                     =       2 tan A 

                                          1 + tan2 A

  • Cos 2A                  = Cos2 A – Sin2 A

                                     = 2 Cos2 A – 1

                                     = 1 – 2Sin2 A

                                     =    1 – tan2 A

                                          1 + tan2 A

  • Tan 2A                 =        2 tan A      

                                            1 – tan2 A

  • Sin 3x                  = 3 Sin x- 4 Sin3x

  • Cos 3x                 = 4 Cos3x- 3 Cos x

  • Tan 3A                 =  3tan A –  tan3 A

                                          1 – 3 tan2 A

  • Sin C + Sin D = 2 Sin C + D. Cos C – D

                                             2                2

  • Sin C – Sin D = 2 Sin C – D. Cos  C + D

                                              2                 2

  • Cos C + Cos D = 2 Cos C + D. Cos C – D

                                                2                 2

  • Cos C – Cos D = – 2 Sin C + D. Sin C – D

                                                  2               2

Sine Rule :

  • Cos A = b2 + c2 – a2

                            2bc

  • Cos B = c2 + a2 – b2

                           2ca

  • Cos C = a2+ b2 – c2 

                           2ab

  • Sin θ. Sin 2θ. Sin 4θ = ¼ Sin 3θ

  • Cos θ. Cos 2θ. Cos 4θ = ¼ Cos 3θ

  • tan θ. tan 2θ. tan 4θ = tan 3θ

  • Sin x = 2 Sin x/2. Cos x/2

  • Cos x = 1 – 2 Sin2 x/2

  • Cos x = 2 Cos 2 x/2 – 1

  • Sec θ + tan θ= x, sec θ = {x2+1}/ 2x

  • Sec θ – tan θ= x, sec θ = {x2+1}/ 2x

  • sin θ + cos θ = x, sin θ- cos θ = √{2-x2}

We are Executive Makers. How can we assist you?

Website Designed and Promoted affordable seo services delhi website designing company in ghaziabad

%d